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Received: 21 February 2001 / Revised version: 18 December 2001
Communicated by D. Schwalm

Abstract. The effects of the restoration of Galilei invariance in the nuclear many-body problem on the
electromagnetic properties of simple bound states are investigated. For this purpose the form factors for
elastic electron scattering from the oscillator ground states of 4He, 16O and 40Ca as well as those for
elastic and inelastic electron scattering between various one-hole states with respect to these reference
configurations are computed with and without projection into the center-of-momentum rest frame. It is
demonstrated that, in some cases, the full restoration of Galilei invariance produces results which are
considerably different from those obtained with the usual approximate way to treat the center-of-mass
motion. The same holds for the mathematical Coulomb sum rules and their first and second moments
obtained for the above-mentioned nuclei.

PACS. 21.60.-n Nuclear-structure models and methods

1 Introduction

This is the second paper in a series of six articles. In the
first one [1] it was shown how Galilei invariance can be
restored in the nuclear many-body problem with the help
of projection techniques. This paper was devoted to the
development of the mathematical tools needed to project
simple bound oscillator configurations into their center-
of-momentum (COM) rest frame and to calculate the ma-
trix elements of arbitrary operators between such pro-
jected states. Furthermore, as a first application, in this
paper the spectral functions and spectroscopic factors of
the uncorrelated oscillator ground states of the three dou-
bly even nuclei 4He, 16O and 40Ca were investigated with
and without projection into the COM rest frame. In com-
plete agreement with earlier studies of the spectroscopic
factors [2], it turned out that the simple picture of an un-
correlated system is modified quite drastically if Galilei
invariance is respected. For the deep-lying hole states one
obtained a considerable depletion of the occupation due
to the removal of the spurious admixtures resulting from
the COM motion. This was compensated by an “over-
occupation” of the (non-spurious) holes within the last
occupied shell so that the sum rules for the total hole
strengths are conserved. Similar effects were seen for the
particle spectroscopic factors.
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In the present article, we shall consider the electromag-
netic properties of simple bound configurations as they
are seen in elastic electron scattering from the oscillator
ground states of the above-mentioned three doubly even
nuclei as well as in elastic and inelastic electron scatter-
ing between the corresponding various one-hole configu-
rations. If initial and final states are both “non-spurious”
oscillator configurations (i.e., the COM is in its 0s oscilla-
tor ground state) then the restoration of Galilei invariance
is trivial: we simply have to modify the normal description
of the corresponding form factors by the so-called “Tassie-
Barker factor” [3]. In case that target and/or final state
contain spurious admixtures due to the COM motion,
however, this prescription is not sufficient. So, e.g., con-
siderable effects of the full restoration of Galilei invariance
on top of the Tassie-Barker correction are seen already in
the elastic scattering from doubly even one-determinant
ground states, if for the latter not simple oscillator config-
urations but Woods-Saxon or Skyrme-Hartree-Fock wave
functions are used [4,5]. Such “general determinants”,
however, will not be considered in the present paper. In-
stead, we restrict ourselves as already in ref. [1] entirely
to simple oscillator configurations. This has the advantage
that all the relevant matrix elements can be computed an-
alytically. Furthermore this restriction is a “conservative
approach”: the effects discussed in the following are a kind
of “lower limit” of what has to be expected in more realis-
tic calculations. Any generalisation of the wave functions
will only increase the effects.
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Obviously, since the oscillator ground states of the
above-mentioned three doubly even nuclei as well as the
corresponding one-hole configurations with the hole out
of the last occupied shell are “non-spurious”, effects on
top of the Tassie-Barker correction can only be expected
for the scattering between various one-hole configurations
with at least one of the hole states not from the last oc-
cupied shell. It will be these processes which are studied
in detail in the following. For completeness, however, the
results for scattering between non-spurious states will be
presented in an appendix, too.

Besides the charge and current form factors in the
present article also the effects of the restoration of Galilei
invariance on the (mathematical) Coulomb sum rule and
their first and second moments will be investigated.

2 Electromagnetic properties

In subsect. 2.1 we shall derive the matrix elements of gen-
eral one-body operators with and without projection into
the COM rest frame. Subsection 2.2 will then present the
electromagnetic form factors between various simple oscil-
lator configurations. Since we are interested in the differ-
ences of the projected with respect to the “normal” results
we do not restrict ourselves to those transitions from the
ground-state configuration of the target to itself or to ex-
cited states but shall consider the transitions between the
various excited configurations, too. For completeness, the
results for the transitions not discussed in this section will
be given in the appendix. Subsection 2.3 then is devoted
to the (mathematical) Coulomb sum rule and its first and
second moments.

2.1 General one-body operators

In the momentum space representation the one-body op-
erators used in the following can be written as

Ô ≡
∑
1 2

∫
d3�k1 o12(�κ1, �λ) c†�k1 1

c�k1−�q 2 , (2.1)

where 1 ≡ σ1, τ1, 2 ≡ σ2, τ2, �κ1 ≡ b�k1, �λ ≡ b�q and �q
is the total momentum transfer to the considered system.

One example for such one-body operators is the kinetic
energy. Here the momentum transfer �q = 0 and

t12(�κ1)≡o12(�κ1, 0)=∆12
(�c)2

2Mc2

1
b2

κ2
1 =∆12

�ω

2
κ2

1. (2.2)

This operator will be treated in more detail in the next ar-
ticle of the present series of papers. The example studied
in the present article are the charge density and current
operators. Details on these operators can be found, e.g., in
ref. [6]. They are obtained as usual by a Foldy-Wouthuysen
reduction [7] (up to order one over the square of the nu-
cleon mass) of the Dirac equation for the nucleon interact-
ing with the electromagnetic field of the passing electron.
Note that this derivation is based on the assumption that

the electromagnetic form factors of the nucleons can be
replaced by the free ones even in the nuclear medium.
We shall restrict ourselves here to one-body currents only.
Since we shall be using phenomenological strong interac-
tions throughout the present series of papers, the inclusion
of meson exchange currents would not be consistent, any-
how.

For the charge density operator one obtains the form
(2.1) with

ρ12(�λ) ≡ o12(�κ1, �λ) = ∆12 fτ1(Q
2) , (2.3)

where the nucleon charge form factors fτ are given by

fτ (Q2) ≡ Gτ
E(Q2) − Q2

8M2

Gτ
E(Q2) + Q2

4M2 Gτ
M (Q2)

1 + Q2

4M2

(2.4)

with the Sachs form factors usually parametrized in the
well-known dipole form (see, e.g., Preston and Bhaduri [8])

Gp
E(Q2) ≡

[
1 +

Q2

(843MeV)2

]−2

,

Gτ
M (Q2) ≡ µτ Gp

E(Q2), with
{

µp = +2.793
µn = −1.913

}
,

Gn
E(Q2) ≡ −µn

Q2

4M2

1

1 + 5.6 Q2

4M2

Gp
E(Q2) . (2.5)

They depend on the (negative) square of the 4-momentum
transfer

Q2 ≡ (�c�q )2 − (∆E)2 , (2.6)

with ∆E being the energy transfer to the system. Note
that because of (2.6), the charge density operator (2.3)
depends on the 3-momentum transfer as well as the en-
ergy transfer. For simplicity we have not introduced ∆E
explicitly as argument on the left side of (2.3). The same
holds for the convection (2.7) and spin current (2.9) op-
erators defined below. Furthermore, (2.3), (2.7) and (2.9)
are all given in units of the elementary charge e.

The corresponding current operator can be split into
two parts. The first is the convection current[

�jcc
12

]
s
(�κ1, �λ)≡o12(�κ1, �λ)=∆12f

cc
τ1

(Q2)
�c

Mc2b
[�κ1]s , (2.7)

from which, because of Siegert’s theorem only the trans-
verse components, i.e., those perpendicular to �q, are
needed. This is indicated by the subscript s. If as usual
the z-axis is chosen in the direction of the momentum
transfer, then s = x, y in the Cartesian, or s = ±1 in the
spherical representation. The nucleon form factors for the
convection current are given by

f cc
τ (Q2) ≡ Gτ

E(Q2) + Q2

4M2 Gτ
M (Q2)

1 + Q2

4M2

. (2.8)

The second part is the spin current[
�j

sc

12

]
s
(�λ) ≡ o12(�κ1, �λ) =

δτ1τ2 Gτ1
M (Q2)

�c

Mc2b

〈
σ1

∣∣∣∣ i2
[
�σ × �λ

]
s

∣∣∣∣σ2

〉
, (2.9)
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which is already purely transverse. In spherical represen-
tation we have (with �q in �z-direction)

〈
σ1

∣∣∣∣ i2(�σ × �λ)±1

∣∣∣∣σ2

〉
= δσ1 ±1/2δσ2 ∓1/2

λ√
2

. (2.10)

Note, that (2.3) and (2.7) conserve the spin projection
while the spin current (2.9) induces a spin-flip. In actual
measurements convection and spin currents cannot be sep-
arated but will contribute simultaneously and do interfere.
However, out of pedagogical reasons we shall treat them
separately in the present paper.

Because of the momentum transfer, the form (2.1) does
not conserve the total linear momentum. To be used in
COM-projected calculations it has to be multiplied with
the so-called Gartenhaus-Schwartz operator exp{−i�q· �RA}
(see, e.g., ref. [6]) which compensates for the transferred
momentum. In normal space representation this operator
comes from writing the one-body operators (2.3), (2.7)
and (2.9) in relative coordinates �ri − �RA and relative mo-
menta p̂i−P̂A/A, where �RA and P̂A are the center-of-mass
coordinate and the operator of the total linear momentum
as defined in eq. (1.2) of ref. [1]. Because of that, obviously,
the Galilei-invariant form of a general one-body operator,

Ôinv
A ≡ Ô exp{−i�q · �RA} , (2.11)

is A-dependent as indicated by the subscript A.
Note, that this modification is sufficient for the con-

vection current, too. The use of relative momenta induces
here only additional terms proportional to �q, which are
longitudinal and hence not needed, and terms propor-
tional to P̂A which are irrelevant because we project into
the COM rest frame.

We start by calculating the expectation value of (2.1)
within our reference determinants | 〉. We obtain

〈 |Ô| 〉=
∑
1 2

∫
d3�k1 o12(�κ1, �λ)〈 |c†�k1 1

c�k1−�q 2| 〉=
∑
1

1
π
√

π

·
∫

d3�κ1 o11(�κ1, �λ) exp{−κ2
1+�κ1 ·�λ−λ2/2} y(�κ1−�λ,�κ1)=

exp
{
−1

4
λ2

}
1

π
√

π

∫
d3�z exp{−z2}

·
∑
1

o11(�z + �λ/2, �λ) y(�z − �λ/2, �z + �λ/2)=exp
{
−1

4
λ2

}

· 1
π
√

π

∫
d3�z exp{−z2}

∑
1

o11(�z + �λ/2, �λ)

·



1 for 4He
1 + 2z2 − λ2/2 for 16O

5/2+2z4−λ2z2−λ2+λ4/8 for 40Ca


, (2.12)

where we have used eq. (2.25) with �κ1 = �z +�λ/2 and the
functions y out of eq. (2.26) from ref. [1].

For the matrix elements of (2.1) in between two one-
hole states one gets in the same way

〈 |b†HhÔ bH′h′ | 〉 =
∑
1 2

∫
d3�k1 o12(�κ1, �λ)

·〈 |b†Hhc†�k1 1
c�k1−�q 2bH′h′ | 〉=

∑
1 2

1
π
√

π

∫
d3�κ1 o12(�κ1, �λ)

· exp{−κ2
1+�κ1 ·�λ−λ2/2}

{
∆12∆h′hδH′H y(�κ1 − �λ, �κ1)

−∆1h′∆2h(�κ1−�λ|H)(H ′|�κ1)
}

=exp
{
−1

4
λ2

}
1

π
√

π

·
∫

d3�z exp{−z2}
∑
1 2

o12(�z + �λ/2, �λ)

·
{

∆12∆h′hδH′H y(�z − �λ/2, �z + �λ/2)

−∆1h′∆2h(�z − �λ/2|H)(H ′|�z + �λ/2)
}

, (2.13)

where we have used eqs. (2.23) to (2.25) from ref. [1],
again with �κ1 = �z + �λ/2. The functions y are the same
as in (2.12) of [1] and the polynomial parts of the Fourier
transforms in the second term of the integrand are given
by eq. (2.9) of the same paper.

The Galilei-invariant versions of these matrix elements
can be easily calculated, too. Instead of (2.12) we obtain
with the projection operator ĈA out of eq. (1.7) of ref. [1]

〈 |Ôinv
A ĈA(0)| 〉

〈 |ĈA(0)| 〉 =
(

A

4

)3/2∑
1 2

∫
d3�k1 o12(�κ1, �λ)

1
π
√

π

·
∫

d3�α
〈 ∣∣∣c†�k1 1

c�k1−�q 2 exp{−i�q · �RA} exp{i�α · bP̂A}
∣∣∣ 〉 =

(
A

4

)3/2∑
1 2

∫
d3�k1 o12(�κ1, �λ)

1
π
√

π

·
∫

d3�α exp
{

i

[
�κ1 − A − 1

A
�λ

]
· �α
}

·
〈 ∣∣∣∣c†�k1 1

exp
{
−i

A − 1
A

�q · �RA−1

}

· exp{i�α · bP̂A−1}c�k1−A−1
A �q 2

∣∣∣ 〉 =

exp
{
−1

4
A − 1

A
λ2

}
1

π
√

π

·
∫

d3�u exp{−u2} 1
π
√

π

∫
d3�v exp{−v2}

·
∑
1

o11

(
i√
A

�u − �v +
A − 1
2A

�λ, �λ

)
x(�β2

′, �β1) =

exp
{
−1

4
A − 1

A
λ2

}
1

π
√

π

∫
d3�u exp{−u2} 1

π
√

π

·
∫

d3�v exp{−v2}
∑
1

o11

(
i√
A

�u − �v +
A − 1
2A

�λ, �λ

)

·



1 for 4He
1 + 2v2 − λ2/2 for 16O

5/2+2v4−λ2v2−λ2+λ4/8 for 40Ca


 , (2.14)
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where use has been made of the operator (2.27) from
ref. [1] with �q1 = −�λ/A and �q2 = 0 and of eq. (2.38)
of ref. [1]. Furthermore,

�β1 = −i
√

2�v +
i√
2
�λ (2.15)

and

�β2
′ = −i

√
2�v − i√

2
�λ

have been used to evaluate the functions x out of eqs.
(2.47), (2.50) and (2.53) out of ref. [1] for the three con-
sidered nuclei, respectively.

Note, that the functions x have here the same de-
pendence on �v as the functions y in eq. (2.12) on �z.
Thus, if the matrix elements o12(�κ1, �λ) do not depend
on �κ1 like it is the case for the charge density (2.3) (spin
and convection currents do not contribute here because
of the vanishing total angular momentum), the integral
(π
√

π)−1
∫

d3�u exp{−u2} gives unity and we are left with

〈 |Ôinv
A ĈA(0)| 〉

〈 |ĈA(0)| 〉 = 〈 |Ô| 〉 exp
{

1
4A

λ2

}
. (2.16)

This is due to the fact that | 〉 = | int 〉|(0s)com〉 is a “non-
spurious” oscillator configuration which splits into an in-
ternal and a COM part with the COM in its oscillator
ground state. Consequently,

〈 |Ô| 〉 = 〈int|Ô exp{−i�q · �RA}|int〉
·〈(0s)com| exp{+i�q · �RA}|(0s)com〉 . (2.17)

From this (2.16) can be easily obtained. The exponen-
tial factor occuring in (2.16) is called the “Tassie-Barker
factor” [3] and is widely used in the analysis of electron
scattering. As has been shown by Schmid and Reinhard [5]
it can also be derived from the Galilei-invariant result for
general (non-oscillator) wave functions by applying subse-
quently a kind of “Gaussian overlap approximation” to the
matrix elements of the shift and the Gartenhaus-Schwartz
operator.

For the projected (but not yet normalized) version of
the hole-hole matrix element (2.13) one obtains

〈 |b†HhÔinv
A−1 ĈA−1(0)bH′h′ | 〉 =

b3π
√

π
∑
1 2

∫
d3�k1o12(�κ1, �λ)

1
π
√

π

·
∫

d3�α
〈 ∣∣∣b†Hhc†�k1 1

c�k1−�q 2 exp{−i�q · �RA−1}

· exp{i�α · bP̂A−1}bH′h′

∣∣∣ 〉 =

b3π
√

π
∑
1 2

∫
d3�k1o12(�κ1, �λ)

1
π
√

π

∫
d3�α

· exp
{

i

[
�κ1 − A − 2

A − 1
�λ

]
· �α
}

·
〈 ∣∣∣∣b†Hhc†�k1 1

exp
{
−i

A − 2
A − 1

�q · �RA−2

}

· exp{i�α · bP̂A−2}c�k1−A−2
A−1 �q 2 bH′h′

∣∣∣ 〉 =

exp
{
−1

4
A − 2
A − 1

λ2

} (
4

A − 1

)3/2

·b3π
√

π
1

π
√

π

∫
d3�u exp{−u2}

· 1
π
√

π

∫
d3�v exp{−v2}

·
∑
1 2

o12

(
i√

A − 1
�u − �v +

1
2

A − 2
A − 1

�λ, �λ

)

·
[
∆21∆h′h z−1

H′H(�β, �β ′)x(�β2
′, �β1)

−∆1h′∆2h r̃H′(�β1, �β ′) rH(�β2
′, �β)

]
, (2.18)

where we have used again the operator (2.27) from ref. [1]
with �q1 = −�q/A and �q2 = 0 as well as eqs. (2.34) and
(2.36) to (2.38) out of ref. [1]. Furthermore,

�β ≡
√

2
A − 1

�u +
i√
2

1
A − 1

�λ ,

�β ′ ≡
√

2
A − 1

�u − i√
2

1
A − 1

�λ ,

�β1 ≡ −i
√

2�v +
i√
2

�λ ,

�β2
′ ≡ −i

√
2�v − i√

2
�λ , (2.19)

while z−1, r̃, r and x are given by eqs. (2.43) to (2.45) and
(2.47) to (2.53) from ref. [1].

For H and H ′ both out of the last major shell occupied
in | 〉, we have z−1

H′H = δH′H and r̃H′(�β1, �β ′) = r̃H′(�β1)
while rH(�β2

′, �β) = rH(�β2
′). The only dependence on

�u is then in the matrix elements o12. Consequently, for
o12 not depending on �κ1 like it is the case for the charge
density (2.3) and the spin current (2.9) or only linearly
depending on this quantity like for the convection current
(2.7) (π

√
π)−1

∫
d3�u exp{−u2} gives unity again. Using

the normalisations out of subsect. 2.4 of ref. [1] for holes
in the last occupied shell, we obtain immediately

〈 |b†HhÔinv
A−1ĈA−1(0) bH′h′ | 〉√

〈 |b†HhĈA−1(0) bHh| 〉 〈 |b†H′h′ĈA−1(0) bH′h′ | 〉
=

〈 |b†HhÔ bH′h′ | 〉 exp
{

1
4(A − 1)

λ2

}
. (2.20)

As can be seen easily (2.20) holds only for both holes
being “non-spurious” but not if at least one hole has an
excitation energy ≥ 1�ω.
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Obviously for a fair comparison, the Tassie-Barker fac-
tor should be included in the “normal” results for all the
form factors. This will be done throughout the following
section.

2.2 Form factors

For the elastic electron scattering from the oscillator
ground-state configurations for 4He, 16O and 40Ca obvi-
ously only the charge density operator does contribute.
Furthermore, the energy transfer is here given by the re-
coil energy (�c�q )2/(2AMc2) so that here

Q2 = (�c�q )2
{

1 − (�c�q )2

4A2M2c4

}
. (2.21)

Making use of (2.3) and (2.16) we obtain, evaluating
(2.12),

F nor
ch, A(Q2) ≡ 〈 |ρ̂| 〉 exp

{
λ2

4A

}
=

F pro
ch, A(Q2) ≡ 〈 |ρ̂ exp{−i�q · �RA}ĈA(0)| 〉

〈 |ĈA(0)| 〉 =

exp
{
−1

4
A − 1

A
λ2

}
Z
[
fp(Q2) + fn(Q2)

]

·



1 for 4He
1 − 1

8λ2 for 16O
1 − 1

4λ2 + 1
80λ4 for 40Ca


 ≡

exp
{
−1

4
A − 1

A
λ2

}
Z ΦA(λ) , (2.22)

since N = Z in these nuclei. The shorthand notation
ΦA(λ) has been introduced here for later use. For the scat-
tering from the one-hole state Hh to the one-hole state
H ′h′ we have, instead of of (2.21),

Q2 = (�c�q )2−
(

(�c�q )2

2(A − 1)Mc2
+ |EHh − EH′h′ |

)2

. (2.23)

Since for all form factors discussed a δτhτh′ is obtained we
shall always assume that τh = τh′ = τ in the following.

As already mentioned, holes out of the last occupied
shell are non-spurious again. The corresponding form fac-
tors can thus be calculated in the usual way or copied from
the literature (see, e.g., [9]). However, for completeness we
shall list these results in the appendix.

In the present context obviously the matrix elements
between holes with spurious admixtures are more inter-
esting. We shall start with the cases where both holes are
out of the same major shell.

For the 0s holes in 16O we obtain without projection

F
0s1/2m, 0s1/2m′
ch, nor (Q2) =

exp
{
− 7

30
λ2

}
δm′ m

[
8Φ16(λ) − fτ (Q2)

]
(2.24)
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Fig. 1. The left side of the figure displays the square of the
Coulomb form factor divided by Z2 for the “elastic” electron
scattering from the 0s proton hole in 16O as a function of
the 3-momentum transfer q. Compared are the normal ap-
proach (open circles) including the Tassie-Barker factor and
the full Galilei-invariant result (full circles). On the right side
the square of the spin current form factor for the scattering
from the 0s proton hole in 16O with spin-flip is presented.

and

F
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sc,±1, nor (Q2) =

δm′ ±1/2δm∓1/2 exp
{
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}
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Gτ
M (Q2)�c
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, (2.25)

while the Galilei-invariant results are here

F
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ch, pro (Q2) = δm′ m exp
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·
[
8Φ16(λ)
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(2.26)

and

F
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}
Gτ

M (Q2)�c

Mc2b

λ√
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·
{

1 − 2
45

λ2 +
1

720
λ4

}
, (2.27)

respectively.
Figure 1 shows on the left side the squares of the charge

form factors (2.24) and (2.26) for the nucleus 15N (both
divided by Z2 = 49) and on the right the squares of the
corresponding spin current form factors (2.25) and (2.27).
Since it is not the aim of the present paper to compare
with experimental data but rather to investigate the ef-
fects of the restoration of Galilei invariance, the nucleon
form factors have been taken in the q → 0 limit (i.e., one
for the proton and zero for the neutron version of (2.4) and
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+2.793 for the proton and −1.913 for the neutron mag-
netic Sachs form factor out of (2.5) entering the expres-
sions for the spin current). As can be seen, the COM pro-
jected charge form factor is almost identical to the Tassie-
Barker corrected normal one up to about 1.5 inverse Fm,
while at higher momentum transfers the normal descrip-
tion yields a slight overestimation of the strength. In the
spin current form factor the effects are larger. The reason
for this is that the charge form factor is dominated by the
first term in (2.24) corresponding to the elastic scatter-
ing from the parent nucleus 16O which gets only a small
correction in (2.26). For the spin current this term is ab-
sent. Here we see only the “hole term” which gets a larger
correction due to the restoration of Galilei invariance.

Rather similar effects can be seen for the same transi-
tion in 40Ca. Here the normal results are

F
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and
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· exp
{
−19

78
λ2

}
λ√
2

Gτ
M (Q2)�c

Mc2b
, (2.29)

while with projection into the COM rest frame one obtains

F
0s̃1/2m, 0s̃1/2m′
ch, pro (Q2) = δm′ m exp

{
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78
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}

·
[
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}]
(2.30)

and
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0s̃1/2m, 0s̃1/2m′
sc,±1, pro (Q2) = δm′ ±1/2δm∓1/2

· exp
{
−19

78
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M (Q2)�c

Mc2b

λ√
2

·
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121
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137255040
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}
. (2.31)

The squares of the form factors (2.28) to (2.31) (again
for a proton hole and with the nucleon form factors in the
q → 0 limit) are presented in fig. 2. Here the Tassie-Barker
corrected normal and the projected charge form factor are
almost identical. In the spin current results comparable
differences are seen as in case of 15N.
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Fig. 2. Same as in fig. 1, but for the scattering from the 0s
proton hole in 40Ca.

In 40Ca we can furthermore consider the scattering
between the 0p holes. Here we obtain in the normal case

F
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while
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and the convection current yields
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which are, except for the different exponential and the
different “elastic” term Φ40(λ) in the charge form fac-
tor identical to the results (A.3) to (A.5) for the “non-
spurious” 0p-0p transition in the A = 15 system given in
the appendix. With projection into the COM rest frame
one gets, on the other hand,
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and
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where we have introduced

Φcc
A (λ) =

[
f cc

p (Q2) + f cc
n (Q2)

]
·
{

1 − 1
8λ2 for A = 16

1 − 1
4λ2 + 1

80λ4 for A = 40

}
(2.38)

in analogy to the definition (2.22).
Again the charge form factor is dominated by the

term correponding to the elastic scattering from 40Ca
which gets only a small correction in the COM projec-
tion. The charge form factors (2.33) and (2.35) are there-
fore again almost identical and not shown in the present
paper. Figure 3 presents the squares of the convection and
spin current form factors (naturally summed over the fi-
nal states and averaged over the initial states) for a proton
0p3/2 hole as initial and final state again in the limit q → 0.
In both cases only small corrections are introduced by the
projection.
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Fig. 3. The squares of the convection current (left side) and
the spin current (right side) form factors are presented as func-
tions of the 3-momentum transfer q for the electron scattering
from the 0p3/2 proton hole state in 40Ca to the same final
state. Since he convection current changes the orbital angular
momentum, the spin current the spin projection both are “in-
elastic” processes. Compared are the “normal” and the “pro-
jected” results.
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Fig. 4. The square of the Coulomb form factor in logarithmic
(left side) and linear scale (right side) for the inelastic electron
scattering from the 0p1/2 proton hole state in 16O (i.e. the
ground state of 15N) to the 0s1/2 proton hole in the same nu-
cleus (i.e. an 1�ω excited state of 15N) are plotted versus the
3-momentum transfer. Again the results obtained with the nor-
mal approach are compared to those of the full Galilei-invariant
description.

Next, we study holes which are separated by 1�ω. For
the scattering from the 0p to the 0s holes in 16O we obtain
in the normal case
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The corresponding projected results are
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and
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The results (2.39) up to (2.44) are summerized for the
scatttering from the 0p1/2 ground state to the 0s1/2 ex-
cited state in 15N in figs. 4 to 6. Figure 4 displays the
square of the Coulomb form factors without (2.39) and
with projection (2.42) into the COM rest frame plotted in
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Fig. 5. Same as in fig. 4, but for the square of the convection
current form factor.
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Fig. 6. Same as in fig. 4, but for the square of the spin current
form factor.

a logarithmic (left side) and in a linear scale (right side).
For this transition drastic differences are seen between
the Tassie-Barker corrected normal and the full COM
projected result. For low momentum transfer the nor-
mal description overestimates the correct Galilei-invariant
strength by almost a factor of 2.5. At momentum transfers
of more than two inverse Fm on the other hand the nor-
mal approach underestimates the strength considerably.
The drastic effects at small momentum transfers are here
due to the first term in (2.42) which corresponds to the
elastic scattering from 16O. This term, which removes the
spurious admixtures, is absent in the normal description.

As can be seen from fig. 5, the drastic effects of the full
restoration of Galilei invariance are seen for the square of
the convection current form factor, too. Again the nor-
mal description (2.41) yields a dramatic overestimation
of the projected strength (2.44) at low momentum trans-
fer, while at momentum transfers above two inverse Fm
an underestimation of the projected strength is obtained.

Again it is the “elastic term” in (2.44) which dominates
these differences.

Finally, the squares of the spin current form factors
(2.40) and (2.43) are presented in fig. 6. Here, as expected
because of the absence of an “elastic term” in (2.43),
the differences between the normal and the projected ap-
proach are rather small at low momentum transfers. At
momentum transfers above two inverse Fm, however, the
effects of the λ2 term in (2.43) can clearly be seen. They
lead to a considerable reduction of the normal strength.
The absence of an “elastic term” (the occurence of which
caused the dramatic effects seen in the charge and con-
vection current results) in the spin current form factor
results from the fact that the spin current is always con-
nected with a spin-flip. Such a spin-flip, however, cannot
be induced by the COM motion which only causes “shifts”
of the total wave function in ordinary space.

In 40Ca we restrict ourselves in this section to the 0d-0p
transitions. The form factors for the other 1�ω transitions
are presented in the appendix.

Here we obtain in the normal approximation
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and
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With projection into the COM rest frame we obtain, on
the other hand,
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Furthermore,
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Fig. 7. The square of the Coulomb form factor in logarithmic
(left side) and linear scale (right side) for the inelastic electron
scattering from the 0d3/2 proton hole state in 40O (i.e. the
ground state of 39K) to the 0p1/2 proton hole in the same nu-
cleus (i.e. an 1�ω excited state of 39K) are plotted versus the
3-momentum transfer. Again the results obtained with the nor-
mal approach are compared to those of the full Galilei-invariant
description.
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Fig. 8. Same as in fig. 7, but for the square of the convection
current form factor.

The results (2.45) up to (2.50) are summerized for the
scatttering from the 0d3/2 ground state to the 0p1/2 ex-
cited state in 39K in figs. 7 to 9. Figure 7 displays the
square of the Coulomb form factors without (2.45) and
with projection (2.48) into the COM rest frame plotted in
a logarithmic (left side) and in a linear scale (right side).
Again drastic differences are seen between the Tassie-
Barker corrected normal and the full COM projected re-
sult. Comparison with fig. 4 clearly shows that these dif-
ferences are of the same size as observed for the 1�ω tran-
sition in 15N and thus are obviously not an 1/A effect.
Again the normal description overestimates the correct
Galilei-invariant strength at low momentum transfer by a
factor of about 2.5, while at momentum transfers of more
than about 1.2 inverse Fm the situation is reversed.

As already observed for 15N, the drastic effects of the
full restoration of Galilei invariance on 1�ω transitions are
seen for the square of the convection current form factor,
too, which is presented in fig. 8. Again the normal descrip-
tion (2.47) yields a dramatic overestimation of the pro-
jected strength (2.50) at low momentum transfers, while
here at momentum transfers above about 1.2 inverse Fm
only small differences between the Tassie-Barker corrected
normal and the projected result do remain. Finally, the
squares of the spin current form factors (2.46) and (2.49)
are presented in fig. 9. For this spin-flip transition the dif-
ferences between the normal and the projected approach
are again rather small at low momentum transfers and do
remain small here even for higher momentum transfers.

Left to be considered are now the holes with an en-
ergy difference of 2�ω in 40Ca. The results for the 1s-0s
transition are given in the appendix.

For the scattering from the 0d to the 0s hole we get in
the normal approximation

F
0s1/2m, 0dj′m′
ch, nor (Q2) = δm′ m fτ (Q2)

· exp
{
−19

78
λ2

}
1
2

√
2j′+1

30
λ2
[
δj′ 5/2 ± δj′ 3/2

]
, (2.51)
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Fig. 9. Same as in fig. 7, but for the square of the spin current
form factor.

while
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and
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With projection into the COM rest frame one obtains here
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Fig. 10. The square of the Coulomb form factor in logarithmic
(left side) and linear scale (right side) for the inelastic electron
scattering from the 0d3/2 proton hole state in 40O (i.e. the
ground state of 39K) to the 0s1/2 proton hole in the same nu-
cleus (i.e. a 2�ω excited state of 39K) are plotted versus the
3-momentum transfer. Again the results obtained with the nor-
mal approach are compared to those of the full Galilei-invariant
description.
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The results for the 0d3/2-0s1/2 transition in 39K are
summerized in figs. 10 to 12. Unlike the 1�ω transitions,
this 2�ω transition is little affected by the full restora-
tion of Galilei invariance. As already observed for the 0�ω
transitions, also here only small differences are seen for
the squares of the charge (fig. 10), the convection current
(fig. 11) and the spin current (fig. 12) form factors.

2.3 Sum rules

For fixed 3-momentum transfer q and energy loss ω for the
electron, the Coulomb scattering from the ground state | 〉
of a considered nucleus is given (besides trivial kinematic
factors) by the so-called longitudinal response function

RL(q, ω)≡
∑
m

|〈m|ρ̂| 〉|2 δ(ω−Em+E0−q2/2MA), (2.57)

where |m〉 denotes the excited states with excitation en-
ergy Em − E0 and the sum symbol means here a dis-
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Fig. 11. Same as in fig. 10, but for the square of the convection
current form factor.

10-7

10-6

10-5

10-4

10-3

10-2

sq
ua

re
 o

f s
pi

n 
cu

rr
en

t f
or

m
 fa

ct
or

0.000

0.002

0.004

0.006

0.008

sq
ua

re
 o

f s
pi

n 
cu

rr
en

t f
or

m
 fa

ct
or

0 1 2 3

3-momentum-transfer q/Fm
-1

1 2

3-momentum-transfer q/Fm-1

d3/2- 0s1/2 (normal)
d3/2 - 0s1/2 (projected)

39K

Fig. 12. Same as in fig. 10, but for the square of the spin
current form factor.

crete sum over the bound and an integral over the con-
tinuum states. q2/2MA is the recoil energy of the consid-
ered system. Obviously, for a Galilei-invariant calculation,
the invariant form (2.11) of the density operator as well
as COM-projected ground and excited states have to be
used.

Global properties of this response function can be ob-
tained from its lowest moments (n = 0, 1, 2, ...)

Σphys
n (q) ≡

ωmax∫
ωmin

dω ωn RL(q, ω) , (2.58)

where ωmin ≡ q2/2MA is given by the recoil energy and
ωmax ≡ q (here � = c = 1). Equation (2.58) are the
so-called “physical sum rules”.

If we assume point nucleons (setting the form factor
(2.4) equal one for the protons and zero for the neutrons),
then the operator ρ̂ does not depend on the excitation
energy of the system. If we, furthermore, assume that for

energy losses above ωmax the response function is essen-
tially vanishing, then we may integrate up to infinity and
use the completeness of the final states (“closure approxi-
mation”). Under these assumptions we obtain from (2.58)
the so-called “mathematical sum rules”. They play an im-
portant role in the analysis of correlations.

For Coulomb sum rule (n = 0) we obtain under these
assumptions

Σ0(q) = 〈 |ρ̂ρ̂†| 〉 . (2.59)

Note that here only the product of the density operator
and its Hermitean conjugate enters. In this product the
Gartenhaus-Schwartz operator out of (2.11) drops out. For
the Coulomb sum rule it is therefore irrelevant, whether
the invariant (2.11) or the usual form (2.3) of the charge
density operator is used. The only difference between
a Galilei-invariant and a usual calculation comes then
from the use of the COM-projected instead of the normal
ground state. If this ground state is a non-spurious oscil-
lator state this projection drops out, and we obtain iden-
tical results with and without projection into the COM
rest frame.

For the considered doubly even nuclei we hence obtain

Σpro
0 (q) ≡ Σnor

0 (q) = Z + exp{−λ2/2}
· 1
π
√

π

∫
d3�x exp{−x2} 1

π
√

π

∫
d3�z exp{−z2}

·
{

4y(�x − �λ/2, �x + �λ/2)y(�z + �λ/2, �z − �λ/2)

−2y(�x − �λ/2, �z − �λ/2)y(�z + �λ/2, �x + �λ/2)
}

=

Z


1 + exp

{−λ2/2
}

(Z − 1)

·




1 for 4He

1 − 2λ2

7 + λ4

112 for 16O

1− 10λ2

19 + 13λ4

152 − 9λ6

1520 + λ8

12160 for 40Ca




 . (2.60)

In the limit q → ∞ these expressions yield the charge
numbers Z. This is the limit of “quasi-elastic” scattering
from the individual protons with no residual correlations.
Deviations from this limit may hence be interpreted as
“correlations”. In the limit q → 0, however, the Coulomb
sum rule is dominated by the elastic scattering and ap-
proaches Z2. In order to emphasize the correlations there-
fore usually the elastic scattering is subtracted from the
Coulomb sum rule and the difference is furthermore di-
vided by Z. One defines

Σinel
0 (q) ≡ 1

Z

[
Σ0 − |Fch, A(q)|2] , (2.61)

where Fch, A(q) is given by eq. (2.22). This function starts
at zero for low momentum transfer and approaches one
for q → ∞. If the Tassie-Barker factor is included in the
normal calculation, then for non-spurious oscillator states
F nor

ch, A(q) ≡ F pro
ch, A(q), and consequently, for the simple A-

nucleon ground states considered here, (2.61) gives again
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Fig. 13. The inelastic Coulomb sum rule for 4He is diplayed
versus the 3-momentum transfer. Compared are the normal
results without (open circles) and with (full circles) the Tassie-
Barker factor. The latter approach is here identical to the full
Galilei-invariant description.

identical results with or without projection into the COM
rest frame. That the inclusion of the Tassie-Barker factor
is rather essential can be seen from fig. 13, where for 4He
we have plotted (2.61) with

Σinel, nor
0 (q) ≡ Σinel, pro

0 (q) =

1 + exp{−λ2/2} − 2 exp{−3λ2/8} (2.62)

and without

Σinel, no TB
0 (q) = 1 − exp{−λ2/2} (2.63)

this factor versus the 3-momentum transfer q. Since it
includes the COM correlations, (2.62) approaches unity
considerably slower than (2.63).

Holes within the last occupied shell of the considered
doubly even systems are again non-spurious oscillator con-
figurations and thus here again the projection into the
COM rest frame yields the same result as the normal ap-
proach including the Tassie-Barker factor. More interest-
ing are the hole states with excitation energy ≥ 1�ω. They
contain spurious admixtures and thus both, the elastic
form factors as well as the Coulomb sum rule obtained
with and without the projection into the COM rest frame
become different. As an example we consider here the 0s
proton-hole in 16O, i.e. an excited state in 15N. Though ex-
perimentally inaccessible, this example gives a hint what
to expect in case that the ground state of a considered
nucleus contains spurious admixtures. In the normal ap-
proach without the Tassie-Barker factor we obtain here

Σinel, no TB
0 (q) = 1 + 6 exp{−λ2/2}

[
1 − 13λ2

42
+

λ4

84

]

− 7 exp{−λ2/2}
[
1 − λ2

7

]2
, (2.64)
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Fig. 14. Same as in fig. 13, but for the (theoretical) scat-
tering from the 0s proton hole in 16O. Since this state has
contaminations from the COM motion, Galilei-invariant and
normal (Tassie-Barker corrected) description give here differ-
ent results.

while with the Tassie-Barker correction one gets

Σinel, nor
0 (q) = 1 + 6 exp{−λ2/2}

[
1 − 13λ2

42
+

λ4

84

]

− 7 exp{−7λ2/15}
[
1 − λ2

7

]2
. (2.65)

On the other hand, the Galilei-invariant result is here

Σinel, pro
0 (q) = 1 + 6 exp{−λ2/2}

[
1 − 20λ2

63
+

13λ4

1008

]

− 7 exp{−7λ2/15}
[
1 − 44λ2

315
− λ4

5040

]2
. (2.66)

Equations (2.64) to (2.66) are displayed versus the 3-
momentum transfer q in fig. 14. It is clearly seen that
here the simple inclusion of the Tassie-Barker factor alone
is not sufficient.

Next, we discuss the first moment of the longitudinal
response function, the so-called energy weighted sum rule.
Dividing this moment by the Coulomb sum rule we get the
most probable energy loss of the electron ω̄

ω̄ ≡
∑
m

[Em − E0 + q2/2MA] |〈m|ρ̂ | 〉|2

Σ0
. (2.67)

Using again point nucleons and the closure approxi-
mation we obtain immediately the well-known double-
commutator expression

ω̄ =
1
2

〈 ∣∣∣[ρ̂†, [Ĥ, ρ̂
]]∣∣∣ 〉

Σ0
+

q2

2MA
. (2.68)

Using the point nucleon form of the normal charge den-
sity operator (2.3) and the usual operator of the kinetic
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energy (2.2) (which is discussed in more detail in the next
article of the present series of papers) one obtains without
worrying about the COM

ω̄nor =
q2

2M

[
Z

Σnor
0

+
1
A

]
+

1
2

〈 ∣∣∣[ρ̂†, [V̂ , ρ̂
]]∣∣∣ 〉

Σnor
0

→ q2

2M

[
1 +

1
A

]
, for q → ∞ . (2.69)

On the other hand the Galilei-invariant result is

ω̄pro ≡

1
2

〈 ∣∣∣[exp{i�q · �RA}ρ̂†,
[
Ĥ, ρ̂ exp{−i�q · �RA}

]]
ĈA(0)

∣∣∣ 〉
〈 |ĈA(0)| 〉Σpro

0

+
q2

2MA
=

q2

2M

Z

Σpro
0

+
1
2

〈 ∣∣∣[exp{i�q · �RA}ρ̂†,
[
V̂ , ρ̂ exp{−i�q · �RA}

]]
ĈA(0)

∣∣∣ 〉〈 ∣∣∣ĈA(0)
∣∣∣ 〉Σpro

0

→ q2

2M
, for q → ∞ , (2.70)

which is the expected result for quasi-elastic scattering.
It should be stressed, however, that it is a little unfair to
compare (2.70) with (2.69). As discussed in the next article
of the present series of papers, for the normal approach at
least the internal Hamiltonian Ĥ − P̂ 2

A/2MA should be
used. Introducing furthermore the invariant form (2.11) of
the charge density operator, we obtain at least in the large
q limit the same result as with the full projection into the
COM rest frame

ω̄nor, corrected ≡

1
2

〈 ∣∣∣[exp{i�q · �RA}ρ̂†,
[
Ĥ− P̂ 2

A

2MA , ρ̂ exp{−i�q · �RA}
]]∣∣∣ 〉

Σnor
0

+
q2

2MA
=

q2

2M

Z

Σnor
0

+

1
2

〈 ∣∣∣[exp{i�q · �RA}ρ̂†,
[
V̂ , ρ̂ exp{−i�q · �RA}

]]∣∣∣ 〉
Σnor

0

→ q2

2M
, for q → ∞ . (2.71)

Finally, we come to the second moment of the longitudinal
response function which is connected with its width. Here
we obtain after a lengthy but straightforward calculation

in the normal approach

(∆ω̄)2nor ≡
(

Σnor
2

Σnor
0

− ω̄2
nor

)
=

q2

3MZ
〈 |T̂ | 〉

+
q4

4M2

Z

Σnor
0

[
1 − Z

Σnor
0

]
+ corrections

(∼ exp{−λ2/2})
+ corrections

(
∼
[
V̂ , ρ̂

])
→ q2

3MZ
〈 |T̂ | 〉 , for q → ∞ , (2.72)

while with projection into the COM rest frame one gets

(∆ω̄)2pro ≡
(

Σpro
2

Σpro
0

− ω̄2
pro

)
=

q2

3MZ

〈 |T̂ ĈA(0)| 〉
〈 |ĈA(0)| 〉

+
q4

4M2

[
1 − Z

Σnor
0

] [
A + 2

A
+

Z

Σpro
0

]
+ corrections

(∼ exp{−λ2/2})
+ corrections

(
∼
[
V̂ , ρ̂ exp{−i�q · �RA}

])

→ q2

3MZ

〈 |T̂ ĈA(0)| 〉
〈 |ĈA(0)| 〉 , for q → ∞ . (2.73)

As expected, the width of the longitudinal response func-
tion is given essentially by the so-called “Fermi motion”.
It is proportional to the square root of the average kinetic
energy per proton in the direction of the 3-momentum
transfer. The COM projected value for this quantity (see
next article) is smaller than the unprojected one. This
difference, however, goes again with 1/A.

3 Conclusions

In the present article the influence of the restoration of
Galilei invariance on the electromagnetic properties of
simple bound states has been investigated. For this pur-
pose the form factors for elastic electron scattering from
the oscillator ground states of 4He, 16O and 40Ca as well
as for the transitions between the various one-hole states
with respect to these reference configurations have been
calculated with projection into the COM rest frame. The
results have then been compared to those obtained with-
out projection but correcting for the COM motion in the
usual way by introducing the Tassie-Barker factor.

The results can be summerized as follows. Only small
effects on top of the Tassie-Barker correction are seen for
the 0�ω and 2�ω transitions. Here the usual prescription
seems to work well. However, we have to take into account
that only simple oscillator configurations were considered.
If both initial and final configuration are non-spurious,
then the Tassie-Barker correction is identical to the COM
projected result. If more general wave functions are con-
sidered (e.g., Hartree-Fock or Woods-Saxon ones) this pic-
ture would change. In fact, in this case considerable effects
of the projection on top of the Tassie-Barker correction are
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already seen in the elastic electron scattering from doubly
even nuclei [4,5].

On the other hand, drastic differences between the
Tassie-Barker corrected normal approach and the full
COM projected description are obtained for the 1�ω tran-
sitions. As far as the charge and the convection current are
concerned the normal approach overestimates the COM
projected strength at low momentum transfer dramati-
cally, while at higher momentum transfer the situation is
reversed. On the other hand, only small effects are seen for
the spin current. The reason is that the latter is connected
with a spin-flip which cannot be induced by the COM
motion. The strong effects of the restoration of Galilei in-
variance are of the same size in 15N and in 39K and thus
clearly not a 1/A effect.

That the 1�ω transitions are strongly affected was to
be expected from the electric dipole transitions with real
photons. Here usually an effective dipole operator is in-
troduced to eliminate the spurious isoscalar excitations
in which protons and neutrons move in phase and thus
produce only a “shift” of the total nucleus. It should
be stressed, however, that this well-known approach does
only work for real photons. If, as in electron scattering the
whole momentum dependence is tested, then the spurious
admixtures have to be eliminated by projection as done
in the present paper.

In the second part of the present paper then the (math-
ematical) Coulomb sum rules and their first and second
moments were investigated for the three considered doubly
even nuclei. Since the oscillator ground states of these nu-
clei are non-spurious, and since the Gartenhaus-Schwartz
modification of the charge density drops out, the normal
and COM projected results for the Coulomb sum rules are
identical. Some care, however, is necessary if as usual in-
stead of the Coulomb sum rules their “inelastic” versions
are considered. Here the form factor for the elastic scat-
tering enters which definitely has to be corrected by the
Tassie-Barker factor in order to obtain reasonable results.
In case that the target state contains spurious admixtures,
the Tassie-Barker correction is not sufficient. This has
been demonstrated for the hypothetical scattering from
a 0s-proton-hole in 16O.

For the first and second moments of the Coulomb sum
rule the restoration of Galilei invariance finally gives a
clear 1/A effect. So, for the most probable energy loss
of the electron the COM projected approach predicts (in
the large q limit) the expected quasi-elastic result while
in the normal approach a shift to higher-energy losses by
a factor (1 + 1/A) is obtained. The width of the quasi-
elastic peak (to be obtained from the second moment) is
essentially given by the expectation value of the kinetic
energy in the target state (Fermi motion). In the COM
projected approach here the Galilei-invariant ground state
enters which produces a smaller kinetic energy and hence
a smaller width. This effect, however, is proportional to
1/A, too.

Appendix A.

In this appendix we complete the results for the form fac-
tors out of subsect. 2.2. We start with the 0�ω transitions
between “non-spurious” oscillator states. For the 0s holes
in 4He, we obtain

F
0s1/2m, 0s1/2m′
ch, nor (Q2) = F

0s1/2m, 0s1/2m′
ch, pro (Q2) =

exp
{
−1

6
λ2

}
δm′ m

[
2Φ4(λ) − fτ (Q2)

]
(A.1)

and

F
0s1/2m, 0s1/2m′
sc,±1, nor (Q2) = F

0s1/2m, 0s1/2m′
sc,±1, pro (Q2) =

exp
{
−1

6
λ2

}
δm′ ±1/2δm∓1/2

λ√
2

Gτ
M (Q2)�c

Mc2b
, (A.2)

while the convection current does not contribute to the
scattering between s holes. Note, that we consider hole
states. That is why the matrix elements get a phase of
(−)j−j′

for the charge density and (−)j+j′
for the currents.

Furthermore this is the reason why the subscript at the
current form factor is η = ±1 = m′ − m instead of the
other way round.

For the scattering between the 0p holes in 16O, we get

F
0pjm, 0pj′m′
ch, nor (Q2) = F

0pjm, 0pj′m′
ch, pro (Q2) =

δm′ m exp
{
− 7

30
λ2

}

·
[
δj′j

{
8Φ16(λ) − fτ (Q2)

[
1 − 1

6
λ2

]}

+fτ (Q2)
1
6
λ2 (−)m−1/2

√
(2j + 1)(2j′ + 1)

· (jj′2|m − m0)(jj′2|1/2 − 1/20)

]
, (A.3)

where we have isolated the scalar (“monopole”) part of the
density explicitly, since we shall need it in the next article
of the present series of papers. For the spin current, we
get here

F
0pjm, 0pj′m′
sc,±1, nor (Q2) = F

0pjm, 0pj′m′
sc±1, pro (Q2) =

Gτ
M (Q2)�c

Mc2b
exp

{
− 7

30
λ2

}
λ√
2

·
[
δj 3/2δj′ 3/2

{[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

] 1√
3

+δm′±1/2δm∓1/2
2
3

[
1 − 1

2
λ2

]}

− δj 1/2δj′ 1/2

{
δm′±1/2δm∓1/2

1
3

[
1 − 1

2
λ2

]}

∓ δj 1/2δj′ 3/2

{
δm′ ±3/2δm±1/2

√
2
3
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+ δm′±1/2δm∓1/2

√
2

3

[
1 − 1

2
λ2

]}

± δj 3/2δj′ 1/2

{
δm′ ∓1/2δm∓3/2

√
2
3

+ δm′±1/2δm∓1/2

√
2

3

[
1 − 1

2
λ2

]}]
(A.4)

and the convection current yields

F
0pjm, 0pj′m′
cc,±1, nor (Q2) = F

0pjm, 0pj′m′
cc±1, pro (Q2) =

f cc
τ (Q2)�c

Mc2b
exp

{
− 7

30
λ2

}
λ

2

·
[

δj 3/2δj′ 3/2

{[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

]

·
√

2
3

+ δm′±1/2δm∓1/2
2
√

2
3

}

+ δj 1/2δj′ 1/2

{
δm′±1/2δm∓1/2

2
√

2
3

}

± δj 1/2δj′ 3/2

{
δm′±3/2δm±1/2

1√
3

+ δm′±1/2δm∓1/2
1
3

}

∓δj3/2δj′1/2

{
δm′∓1/2δm∓3/2

1√
3

+δm′±1/2δm∓1/2
1
3

}]
.

(A.5)

For the scattering between the 1s holes in 40Ca, one gets

F
1s1/2m, 1s1/2m′
ch, nor (Q2) = F

1s1/2m, 1s1/2m′
ch, pro (Q2) =

δm′ m exp
{
−19

78
λ2

}

·
[
20Φ40(λ) − fτ (Q2)

{
1 − 1

3
λ2 +

1
24

λ4

}]
(A.6)

and

F
1s1/2m, 1s1/2m′
sc,±1, nor (Q2) = F

1s1/2m, 1s1/2m′
sc,±1, pro (Q2) =

Gτ
M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}

· δm′ ±1/2δm∓1/2
λ√
2

{
1 − 1

3
λ2 +

1
24

λ4

}
. (A.7)

Furthermore, for the scattering between the 0d holes in
40Ca, the results are

F
0djm, 0dj′m′
ch, nor (Q2) =

F
0djm, 0dj′m′
ch, pro (Q2) = δm′ m exp

{
−19

78
λ2

}

·
[
δj′j

{
20Φ40(λ) − fτ (Q2)

{
1 − 1

3
λ2 +

1
60

λ4

}}

−fτ (Q2)
∑

L=2,4

(−)m−1/2
√

(2j + 1)(2j′ + 1)

· (jj′L|m − m0)(jj′L|1/2 − 1/20) ρ0d0d
L

]
, (A.8)

where we have again isolated the monopole part. By defi-
nition

ρ0d0d
2 ≡ − 7

30
λ2

{
1− 1

14
λ2

}
, and ρ0d0d

4 ≡ 1
60

λ4. (A.9)

Furthermore, here

F
0djm, 0dj′m′
sc,±1, nor (Q2) = F

0djm, 0dj′m′
sc,±1, pro (Q2) =

Gτ
M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
λ√
2

·
[

δj 5/2δj′ 5/2

{[
δm′±5/2δm±3/2 + δm′∓3/2δm∓5/2

]

· 1√
5

+

[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

]
2
√

2
5

·
[
1 − 1

2
λ2

]
+ δm′±1/2δm∓1/2

3
5

[
1 − 2

3
λ2 +

1
12

λ4

]}

−δj 3/2δj′ 3/2

{[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

]

·
√

3
5

[
1 − 1

2
λ2

]
+ δm′±1/2δm∓1/2

· 2
5

[
1 − 2

3
λ2 +

1
12

λ4

]}
± δj 5/2δj′ 3/2

·
{

δm′∓3/2δm∓5/2
2√
5

+ δm′±1/2δm∓1/2

·
√

6
5

[
1 − 2

3
λ2 +

1
12

λ4

]
+

[
δm′±3/2δm±1/2

√
2

5

+ δm′∓1/2δm∓3/2
2
√

3
5

] [
1 − 1

2
λ2

]}

∓δj 3/2δj′ 5/2

{
δm′±5/2δm±3/2

2√
5

+ δm′±1/2δm∓1/2

√
6

5

[
1 − 2

3
λ2 +

1
12

λ4

]

+

[
δm′±3/2δm±1/2

2
√

3
5

+ δm′∓1/2δm∓3/2

√
2

5

] [
1 − 1

2
λ2

]}]
(A.10)
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and

F
0djm, 0dj′m′
cc,±1, nor (Q2) = F

0djm, 0dj′m′
cc,±1, pro (Q2) =

−f cc
τ (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
λ√
2

·
[

δj 5/2δj′ 5/2

{[
δm′±5/2δm±3/2 + δm′∓3/2δm∓5/2

]

· 2√
5

+

[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

]

· 4
√

2
5

[
1 − 1

8
λ2

]
+ δm′±1/2δm∓1/2

6
5

[
1 − 1

6
λ2

]}

+δj 3/2δj′ 3/2

{[
δm′±3/2δm±1/2 + δm′∓1/2δm∓3/2

]

· 3
√

3
5

[
1 − 1

18
λ2

]
+ δm′±1/2δm∓1/2

6
5

[
1 − 1

6
λ2

]}

∓δj 5/2δj′ 3/2

{
δm′∓3/2δm∓5/2

1√
5

+ δm′±1/2δm∓1/2

√
3

5
√

2

[
1 − 1

6
λ2

]

+ δm′±3/2δm±1/2
1

5
√

2

[
1 +

1
2
λ2

]

+ δm′∓1/2δm∓3/2

√
3

5

[
1 − 1

3
λ2

]}

±δj 3/2δj′ 5/2

{
δm′±5/2δm±3/2

1√
5

+ δm′±1/2δm∓1/2

√
3

5
√

2

[
1 − 1

6
λ2

]

+ δm′±3/2δm±1/2

√
3

5

[
1 − 1

3
λ2

]

+ δm′∓1/2δm∓3/2
1

5
√

2

[
1 +

1
2
λ2

]}]
. (A.11)

Finally, for the matrix elements between the 1s and 0d
holes in 40Ca, we obtain

F
1s1/2m, 0dj′m′
ch, nor (Q2) = F

1s1/2m, 0dj′m′
ch, pro (Q2) =

−fτ (Q2) exp
{
−19

78
λ2

}
δm′ m

1
3

√
2j′ + 1

5

·
[
δj′ 5/2 + (−)1/2−mδj′ 3/2 λ2

{
1 − 1

8
λ2

}]
, (A.12)

while

F
1s1/2m, 0dj′m′
sc,±1, nor (Q2) = F

1s1/2m, 0dj′m′
sc,±1, pro (Q2) =

Gτ
M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
δm′±1/2δm∓1/2

1
3

√
2j′ + 1

10

·
[
δj′ 5/2 + (−)1/2−mδj′ 3/2 λ3

{
1 − 1

8
λ2

}]
(A.13)

and

F
1s1/2m, 0dj′m′
cc,±1, nor (Q2) = F

1s1/2m, 0dj′m′
cc,±1, pro (Q2) =

−f cc
τ (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
λ3

4
√

30

·
[
δj′ 5/2

{
δm′±3/2δm±1/2 2 + δm′±1/2δm∓1/2

√
2

}

± δj′ 3/2

{
δm′±3/2δm±1/2 + δm′±1/2δm∓1/2

√
3

}]
.

(A.14)

Next, we list the results for those 1�ω transitions in
40Ca which have not been prsented in subsect. 2.2. For
the 0p to 0s transition, we obtain here in the normal case

F
0s1/2m, 0pj′m′
ch, nor (Q2) = δm′m fτ (Q2) exp

{
−19

78
λ2

}

· iλ

2

√
2j′ + 1

3

[
δj′ 3/2 + (−)1/2−mδj′ 1/2

]
, (A.15)

while

F
0s1/2m, 0pj′m′
sc,±1, nor (Q2) =

−δm′ ± 1/2δm∓ 1/2
Gτ

M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}

· iλ2

2
√

2

√
2j′ + 1

3
[
δj′ 3/2 ± δj′ 1/2

]
(A.16)

and

F
0s1/2m, 0pj′m′
cc,±1, nor (Q2) =

−f cc
τ (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
i√
2

·
[
δj′ 3/2

{
δm′ ± 3/2δm± 1/2 + δm′ ± 1/2δm∓ 1/2

1√
3

}

∓ δj′ 3/2δm′ ± 1/2δm∓ 1/2

√
2
3

]
(A.17)

Note that again except for the different exponential
these results are identical to (2.39) to (2.41) obtained for
16O. With projection into the COM rest frame, however,
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this does not hold anymore. We obtain

F
0s̃1/2m, 0pj′m′
ch, pro (Q2) = −δm′m exp

{
−19

78
λ2

}

· iλ

2

√
5600
5499

√
2j′ + 1

3

[
δj′ 3/2 + (−)1/2−mδj′ 1/2

]

·
[

1
2

Φ40(λ) − fτ (Q2)
[
1 − 281

21840
λ2

+
43

436800
λ4 − 1

873600
λ6

]]
, (A.18)

while

F
0s̃1/2m, 0pj′m′
sc,±1, pro (Q2) = −δm′ ± 1/2δm∓ 1/2

· Gτ
M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}

· iλ2

2
√

2

√
5600
5499

√
2j′ + 1

3
[
δj′ 3/2 ± δj′ 1/2

]
·
{

1 − 281
21840

λ2 +
43

436800
λ4 − 1

873600
λ6

}
(A.19)

and

F
0s̃1/2m, 0pj′m′
cc,±1, pro (Q2) =

�c

Mc2b
exp

{
−19

78
λ2

}
i√
2

√
5600
5499

·
[
δj′ 3/2

{
δm′ ± 3/2δm± 1/2 + δm′ ± 1/2δm∓ 1/2

1√
3

}

∓ δj′ 3/2δm′ ± 1/2δm∓ 1/2

√
2
3

]
·

·
[

1
2

Φcc
40(λ) − f cc

τ (Q2)
{

1 − 281
21840

λ2

+
43

436800
λ4 − 1

873600
λ6

}]
. (A.20)

The structure of these results is rather similar to that
obtained for the 0p-0s form factors in the A = 15 sys-
tem. Again there occurs an “elastic term” in the projected
charge and convection current form factors which is absent
for the spin-flip transition. The effects are similar to those
displayed in fig. 4 to 6 and will hence not be shown in the
present article.

In 40Ca we can furthermore consider the 1s-0p form
factors. Here, we obtain in the normal approximation

F
0pjm, 1s1/2m′
ch, nor (Q2) = −δm′m fτ (Q2) exp

{
−19

78
λ2

}

· iλ

3
√

2

√
2j′+1

[
δj′ 3/2 + (−)1/2−mδj′ 1/2

]{
1− 1

4
λ2

}
,

(A.21)

while

F
0pjm, 1s1/2m′
sc,±1, nor (Q2) = δm′ ± 1/2δm∓ 1/2

· Gτ
M (Q2)�c

Mc2b
exp

{
−19

78
λ2

}

· iλ2

6

√
2j′ + 1

[
δj′ 3/2 ± δj′ 1/2

]{
1 − 1

4
λ2

}
(A.22)

and

F
0pjm, 1s1/2m′
cc,±1, nor (Q2) =

−f cc
τ (Q2)�c

Mc2b
exp

{
−19

78
λ2

}
i√
6

{
1 +

1
4
λ2

}

·
[
δj′ 3/2

{
δm′ ± 3/2δm± 1/2 + δm′ ± 1/2δm∓ 1/2

1√
3

}

∓ δj′ 3/2δm′ ± 1/2δm∓ 1/2

√
2
3

]]
. (A.23)

With projection into the COM rest frame, we obtain, on
the other hand,

F
0pjm, 1s1/2m′
ch, pro (Q2) =

δm′m exp
{
−19

78
λ2

}
iλ

3
√

2
40√
1365

√
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·
[
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] [1
2
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− fτ (Q2)
40√
1365

{
1 − 43

160
λ2 +

1
320

λ4

}]
, (A.24)

while

F
0pjm, 1s1/2m′
sc,±1, pro (Q2) =
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}
(A.25)

and

F
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cc,±1, pro (Q2) =
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}
i√
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40√
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·
[
δj′ 3/2

{
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}]
. (A.26)



338 The European Physical Journal A

Again we observe the occurence of an “elastic term”
removing the spurious admixtures for the charge and con-
vection current form factors.

Left to be considered are the 2�ω transitions between
the 1s and the 0s hole states in 40Ca. Here, we obtain
without projection

F
0s1/2m, 1s1/2m′
ch, nor (Q2) =

−δm′ m exp
{
−19

78
λ2

}
fτ (Q2)

λ2

2
√

6
, (A.27)

and

F
0s1/2m, 1s1/2m′
sc,±1, nor (Q2) = δm′ ±1/2δm∓1/2

· exp
{
−19

78
λ2

}
Gτ

M (Q2)�c

Mc2b

λ3

4
√

3
, (A.28)

while in the COM rest frame, we have

F
0s̃1/2m, 1s1/2m′
ch, pro (Q2) = δm′ m exp
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·
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(A.29)

and

F
0s̃1/2m, 1s1/2m′
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· exp
{
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}
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}
, (A.30)

respectively.
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